If $A = \left\{ {x \in {z^ + }\,:x < 10} \right.$& and $x$ is a multiple of $3$ or $4\}$, where $z^+$ is the set of positive integers, then the total number of symmetric relations on $A$ is
$2^5$
$2^{15}$
$2^{10}$
$2^{20}$
Give an example of a relation. Which is Transitive but neither reflexive nor symmetric.
Give an example of a relation. Which is Reflexive and transitive but not symmetric.
Let $\mathrm{A}$ be the set of all students of a boys school. Show that the relation $\mathrm{R}$ in A given by $\mathrm{R} =\{(a, b): \mathrm{a} $ is sister of $\mathrm{b}\}$ is the empty relation and $\mathrm{R} ^{\prime}=\{(a, b)$ $:$ the difference between heights of $\mathrm{a}$ and $\mathrm{b}$ is less than $3\,\mathrm{meters}$ $\}$ is the universal relation.
Let $X =\{1,2,3,4,5,6,7,8,9\} .$ Let $R _{1}$ be a relation in $X$ given by $R _{1}=\{(x, y): x-y$ is divisible by $3\}$ and $R _{2}$ be another relation on $X$ given by ${R_2} = \{ (x,y):\{ x,y\} \subset \{ 1,4,7\} \} $ or $\{x, y\} \subset\{2,5,8\} $ or $\{x, y\} \subset\{3,6,9\}\} .$ Show that $R _{1}= R _{2}$.
Given the relation $R = \{(1, 2), (2, 3)\}$ on the set $A = {1, 2, 3}$, the minimum number of ordered pairs which when added to $R$ make it an equivalence relation is