If $A = \left\{ {x \in {z^ + }\,:x < 10} \right.$& and $x$ is a multiple of $3$ or $4\}$, where $z^+$ is the set of positive integers, then the total number of symmetric relations on $A$ is
$2^5$
$2^{15}$
$2^{10}$
$2^{20}$
Let $R$ be a relation on $Z \times Z$ defined by$ (a, b)$$R(c, d)$ if and only if $ad - bc$ is divisible by $5$ . Then $\mathrm{R}$ is
Let the relations $R_1$ and $R_2$ on the set $\mathrm{X}=\{1,2,3, \ldots, 20\}$ be given by $\mathrm{R}_1=\{(\mathrm{x}, \mathrm{y}): 2 \mathrm{x}-3 \mathrm{y}=2\}$ and $\mathrm{R}_2=\{(\mathrm{x}, \mathrm{y}):-5 \mathrm{x}+4 \mathrm{y}=0\}$. If $\mathrm{M}$ and $\mathrm{N}$ be the minimum number of elements required to be added in $R_1$ and $R_2$, respectively, in order to make the relations symmetric, then $\mathrm{M}+\mathrm{N}$ equals
Let $R$ be a relation on the set $N$ be defined by $\{(x, y)| x, y \in N, 2x + y = 41\}$. Then $R$ is
If $R_{1}$ and $R_{2}$ are equivalence relations in a set $A$, show that $R_{1} \cap R_{2}$ is also an equivalence relation.
Let $X$ be a family of sets and $R$ be a relation on $X$ defined by $‘A$ is disjoint from $B’$. Then $R$ is